

Application-driven Virtual Network Slicing for Future Broadcast Core Network

Zuqing Zhu

University of Science and Technology of China zqzhu@ieee.org

Future Broadcast Core Networks

Fast Development

Global Internet users: 5.3 billion by 2023 (66% of total population).

□ Networked devices: 29.3 billion by 2023 (11% of them will be connected TVs).

Architectural Scalability

Global traffic: annual growth rate of 25%, more than 32 ZB by 2023.

Average access speed: broadband at 110 Mbps, Wi-Fi at 92 Mbps, by 2023.

□Now, ICT consumes more than 5% of total power used in the United States.

Resource Utilization

Average utilization: Servers ~20%, Storage ~25%, Network ~30% (dynamic and unbalanced)

Management Agility

Long lead time to deploy new services

[1] Cisco Annual Internet Report, 2018-2021, White Paper.

[2] Z. Kerravala, "A Data Center Fabric is Critical to a Next-Generation Unified Data Center," Yankee Group White Paper.

Virtual Network Slicing Contributes a Potential Solution

- Virtualize network and IT resources in core networks.
- Create network slices dynamically to adapt to service demands.
- Make network slices share the same substrate resources but with proper isolation.

Enabling Techniques for Virtual Network Slicing

Software-Defined Networking (SDN)

Separation of control and data planes to make the creation and management of virtual network slices easier, faster and more efficient.

Data Plane

Network elements should enable resource virtualization and isolation.

Switches should be protocol independent for future-proof application support.

Virtualization Layer

□ Sit in between the control and data planes.

Virtualize, allocate and isolate substrate resources in the data plane to build virtual network slices according to applications' QoS demands.

Control Plane

Have the adaptivity to provision services in virtual network slices costeffectively in dynamic network environments.

Can leverage artificial intelligence (AI) to achieve smart and timely decisions.

Data Plane: Limitations of OpenFlow

Number of match fields in OpenFlow 1.x is increasing fast to adapt to more protocols!

Data plane: Protocoldependent and limited programmability.

OpenFlow-based data plane is NOT future-proof.

Programmable Data Plane (PDP)

Protocol Independent Forwarding (PIF)

Open Networking Foundation (ONF) project with two approaches: P4 and POF.

P4: Programming Protocol-Independent Packet Processors

- Provide guidance on how to write and compile packet processing programs.
- Program a switch in two stages: configuration and runtime, *i.e.*, a P4-based PDP switch needs to go offline to update packet processing pipelines.
- Hardware solution: Barefoot switches with Tofino ASIC; Software solution: BMv2 software switch.

POF: Protocol-Oblivious Forwarding

Provide guidance on what the underlying primitive instruction set should be.

Program a switch in runtime by installing flow tables (similar to OpenFlow), *i.e.*, a POF-based PDP switch can update packet processing pipelines dynamically.

Only has software solution, but hardware solution is not available.

Protocol-Oblivious Forwarding (POF)

The data plane with POF is completely protocol-independent

- POF locates data fields in packets through <offset, length> tuples without a protocol parser
- POF provides an instruction set (POF-FIS) to facilitate table matching and packet processing based on <offset, length> tuples

An Example on POF

To Process and Forward an IPv4 Packet

As a protocol-independent protocol, POF does not need to know "what" but only need to know "how".

POF-based Virtual Network Slicing System

- Control Plane:
 - POF Controller
- Virtualization Layer:
 - POFVisor
 - POF Programming (POP) Environment
- Data Plane:
 - High-Throughput POF Software Switch (PVS)

POFVisor: Network Virtualization Hypervisor

Isolation / QoS guarantee

- Isolation via pipeline branching in substrate switch
- Per slice QoS management by metering individual pipeline
- Deep programmability for each slice
- Full protocol header manipulation
- Self-defined header structures and sequences

Agile virtual-to-substrate network mapping

- One-to-many / many-to-one
- Big switch

Intelligent Control Plane for Applicationdriven Virtual Network Slicing

Control plane needs to manage a large variety of network elements for virtual network slicing

Control plane needs to make automatic and timely decisions to ensure various QoS/QoE to applications

- Latency is an important metric for many applications: Global average fixed latency of cloud services 31 msec, Asia Pacific 21 msec, Europe 27 msec [1]
- A 1 msec advantage in trading applications can be worth \$100 million a year to a major brokerage firm [5].

[1] Cisco Global Clould Index, Forecast and Methodology, 2016-2012 White Paper.[5] Information Week Magazine.

Knowledge-defined Control Plane

Human Brain: Levels of Knowledge

Predictive Analytics

Predictive analytics: Forecast based on memory + Decision making based on knowledge.

We design the control plane to include multiple AI modules

- AI modules coordinate to handle the complex tasks of knowledgedefined network orchestration (KD-NO).
- Al modules extract different levels of knowledge from the telemetry data collected in the substrate network.
- Modular design, better scalability, and easier to train and maintain the AI modules.

AI: Deep Learning and Deep Reinforcement Learning

Deep Learning

- Offline Training,
- Online Transfer Learning
- Prediction

Deep Reinforcement Learning

- Online Training
- Decision Making

Preprocessing and Prediction: Low-level Knowledge Extraction

- Analyzing telemetry data of all the VMs and network elements and managing them accordingly would not be feasible.
 - Numerous VMs and network elements in virtual network slices
 - □ Huge volume of telemetry data to analyze, if we want full coverage

Preprocessing:

- Screening telemetry data to find the "major contributors"
- Determining predictability by checking the auto-correlation of data
- Minimizing allocated predictors with cross-correlation: traces with strong cross-correlation can be forecasted with the same predictor.

Prediction:

Offline training: only train the necessary predictors with historical traces
Online transfer learning: light-weighted retraining with online data

High-level Knowledge Extraction

High-level knowledge:

Matching degree between the embedding schemes of virtual network slices and the applications running in them.

□ Hot-spots:

Highly-loaded servers and congested switch ports in the substrate network.

Experimental Scenarios and Parameters

Run Hadoop applications in 9 VMs that belong to three Hadoop clusters (*i.e.*, three virtual network slices).

- Each cluster processes tasks generated according to Google traces.
- Scale original 24-hour task pattern down to 12 minutes
 - Tasks: CPU-bound ones (high CPU usage, low I/O and traffic loads), and I/Obound ones (high I/O and traffic loads, low CPU usage)

KD-NO reduces task completion time effectively.

FuNET: POF-enabled WAN Testbed

FuNET - Provide experimental services with sliced and virtualized WAN resources.

Software

- FuOS
- FuES

Devices

- FuRack
- Key technologies
 - POF
 - SDN/NFV

FuNET: POF-enabled WAN Testbed

System Functionalities

- Mapping between virtual and substrate resources.
- Generate and schedule virtual network slices on demand.

Takebacks

- We discuss recent advances on the network slicing technologies for effectively supporting applications in future networks.
- □ To satisfy stringent QoS demands of applications, we cover innovations in data plane, virtualization layer, and control plane.
- For data plane, we introduce the PDP techniques that can make packet processing and forwarding protocol-independent.
- We show the open-source platform that can make virtualization layer work seamlessly with PDP.
- We implement AI-based techniques in control plane, to reach smart and timely orchestration decisions.

http://www.zuqingzhu.info zqzhu@ieee.org

